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ABSTRACT 

An investigation of five change detection methods used in synthetic aperture radar 

(SAR) is presented in this thesis. This investigation utilizes data gathered from the Air 

Force Research Laboratory (AFRL) Sensor Data Management System (SDMS) in order 

to compare the various change detection techniques. These change detection methods 

include the following: a) incoherent change detection (ICCD), b) coherent change 

detection (CCD), c) alternative coherent change detection (ACCD), d) log 

likelihood change statistic (LLCS), and e) a two-stage change detection, which 

involves a combination of ICCD and CCD. In addition, a new change detection 

method for comparison with these five basic methods is developed. This investigation 

reveals that the LLCS statistic is the most promising method for revealing changes 

within the SDMS dataset. Furthermore, the author’s change detection method 

yields overall visual improvement in comparison to the two-stage change detection 

method. 
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I. INTRODUCTION 

Synthetic aperture radar (SAR) is a radar application that can image large 

geographical areas and detect changes in the scene. This concept was introduced by Carl 

Wiley in 1951 and showed the manner in which a large geographical area, e.g., one 

square mile, can be captured and imaged without the need of a large antenna aperture [1]. 

As research progressed with SAR, applications became more sophisticated. SAR methods 

were developed including the following applications: a) capturing seismic effects in 

localized regions [2], b) monitoring ship traffic around ports [3], and c) measuring 

displacements of cargo containers inside shipyards [4]. Each of these examples applies 

the concepts of change detection. Change detection methodologies are the focus of this 

thesis. 

There are two general modalities of change detection: incoherent and coherent. 

Incoherent change detection typically involves comparing the mean intensities of two or 

more images region [5]. The resulting intensities can be affected by noise of the receiver 

or a change in the scene, as if a car moved out of a parking spot or a tractor plowed 

through a field. Coherent change detection is different from the non-coherent methods in 

that the phase information is used, which allows for improved detection of small-scale 

changes [6].  

In this thesis, we investigate a number of varieties of both incoherent and change 

detection methods. In two special cases, we examine methods resulting from a 

combination of two or more of the basic change detection methods.  

A. PURPOSE OF THESIS 

The purpose of this thesis is to investigate and understand basic change detection 

methods. In order to facilitate this analysis, a dataset obtained from Air Force Research 

Laboratory (AFRL) is processed using the different change detection schemes. The 

database that AFRL offers is called the Sensor Data Management System (SDMS) 

database. The available SDMS data includes different SAR platforms’ collections at 

different geographical locations as well as various simulated target datasets. The dataset 
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chosen for the present investigation is the coherent change detection (CCD) Challenge 

Problem. This dataset is described in more detail in Chapter II Section A. 

In this investigation, we present the results of six different change detection 

methods. The author developed the concepts of the sixth and final method examined. 

Each of the candidate methods are applied to the SDMS data and then evaluated based on 

visually-derived ground truth and receiver operating characteristic (ROC) curves.  

B. THESIS ORGANIZATION 

The thesis is organized in a manner to describe the concepts, simulate the models, 

and apply the concepts and models to real-world data. A brief explanation on SAR and 

mathematical concepts are covered in Chapter II. This includes concepts of backscatter 

power and coherence, which are two of the key metrics of interest in this investigation. 

The types of change detection methods studied in this investigation are shown in Chapter 

III. This includes equations and descriptions of each method’s change metrics. Design 

and concepts of an improvised change detection method is presented in Chapter IV. The 

simulator design and simulation results are covered in Chapter V. The change detection 

methods are applied to SDMS dataset in Chapter VI. Finally, the discussion of results and 

future work is covered in Chapter VII.  
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II. SAR CONCEPTS AND DESCRIPTIONS

In this chapter, we provide an introduction to the SDMS data, which are utilized 

in the discussion of the various change detection algorithms. In addition, in this section is 

provided a discussion of the relevant mathematical concepts and the SAR principles. 

A. SDMS DATA 

The available SDMS datasets [7] cover a number of relevant images, including: a) 

simulated SAR targets, b) targets imbedded in forest terrain, c) moving targets within an 

urban environment, d) time-lapsed photos of a set scene, and e) multiple others. There are 

various challenges that are developed for each of the datasets. In this thesis, we 

concentrate on the methods of change detection, so a relevant dataset was chosen to 

accommodate this focus—the CCD challenge problem [8]. The image of the entire scene 

in the CCD challenge dataset is shown in Figure 1. 

The subfigures shown in Figure 1 are labeled as mission, reference, and CCD. 

The mission subfigure is a baseline scene image captured at a certain time interval. The 

reference subfigure is the same scene image captured at a later time interval. The CCD 

subfigure shows the CCD’s change metric image. In the CCD subfigure, there are labels 

showing objects in the figure. This is the only “truth data” provided in the CCD challenge 

problem dataset.  

The datasets have two different types of data available: real and complex. The 

CCD challenge problem dataset is multi-polarized and complex-valued data. When 

investigating the incoherent change detection scheme, we take the absolute value of the 

complex data to mimic only magnitude data. All other change detection methods in this 

paper are able to process complex data. 
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Figure 1.  CCD Challenge Problem Scene. Source: [8]. 

B. MATHEMATICAL CONCEPTS 

1. Spatial Averaging (Moving Window)

SAR data usually has noise and speckle artifacts contained within the imagery and 

is a natural phenomenon of the SAR image formation process. A method of spatial 

averaging, which is also named the “moving window” technique, can reduce the speckle 

and filter the high frequency noise in the SAR data. The archetypical equation for the 

moving window is 

1

1 N

k
k

I I
N =

= ∑ , (1) 

where kI is the kth pixel intensity and N  is the total number of image cells of interest. 

This moving window resembles a low-pass filter which attenuates high frequency noise 

energy. 
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2. Correlation 

Correlation is a measure to check for linear dependence between two random 

variables. The only drawback of correlation is that it does not imply causation; thus, two 

random variables can appear to be correlated. If one random variable begins to vary, an 

effect may not be evident in the other random variables. The correlation coefficient 

equation is given by  

 
* *

,

E{ } x y
x y

x y

xy m m
ρ

σ σ
−

= .  (2) 

Here, *E{ }xy represents the expected value of the product of the x  random variable and 

the conjugate of the y  random variable. In addition, xm and ym represent the means of 

the x  and y random variables, respectively, and the xσ  and yσ  represent the standard 

deviations of the x  and y random variables, respectively. The correlation coefficient 

magnitude ,x yρ  has values which range from zero to unity. Two random variables are 

said to be correlated if the correlation coefficient magnitude is near unity. Two random 

variables are said to be uncorrelated if this magnitude is approximately zero. 

3. Covariance 

 Covariance is a measure of how the product of two mean-removed random 

variables trend in behavior. For example, if the random variable 𝑥𝑥 is increasing and that 

of 𝑦𝑦 is increasing, then these random variables are said to vary with one another. The 

means must be removed from the respective random variables in order to capture the 

appropriate measure of this behavior 

 , E{( )( ) }H
x y x yx m y mγ = − − . (3) 

Here, E{:} is the expected value of the complex conjugate, x and y  are random 

variables, xm  and ym  represent the means of the x  and y  random variables, 

respectively, and (:)H represents the Hermitian transpose. 
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 The Hermitian transpose is the conjugate transpose of an array or matrix. This is 

specific to complex data. For real-valued data, the Hermitian transpose is replaced with a 

transpose.  

C. SAR CONCEPTS 

1. Speckle 

Examination of SAR imagery reveals that there are typically artifacts which 

appear across each image. These “speckle” artifacts are due to multiple diffractions and 

reflections occurring from rough surfaces. An example image containing such speckle is 

presented in Figure 2. This phenomenon becomes apparent in Chapter VI when 

examining with the SDMS data. Furthermore, the type of change detection being 

performed can mitigate or exasperate the effects of speckle. Speckle is regarded as 

multiplicative noise in SAR applications [9].  

 

Figure 2.  Zoomed-in Area of CCD Challenge Dataset 

Inherently, speckle has high frequency components. These high frequency 

components can cause errors when performing CCD and can lead to false alarms in 

detection. Spatial averaging performs low pass filtering that reduces the amount of high 

frequency content in the image; however, such averaging can reduce the ability to resolve 
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object edges by blending them into the background. An example of this blending of edges 

is presented in Figure 3. The scene in Figure 3 was identified as a building [8]. This scene 

was averaged using a 15 by 15 moving window.  

 

Figure 3.  Over-filtered Image of a Building in the CCD Challenge Dataset 

2. Backscatter Power 

In this thesis, the term “backscatter power” is a reference to the estimate of 

backscatter power, as opposed to the true backscatter power of a scene. The existence of 

speckle corrupts local groups of pixels and, thus, requires averaging to filter out some of 

the speckle effect [9]. Mathematically, this process is represented as 

 2

1

1 | |
N

k
k

I f
N =

= ∑ . (4) 

The variable N  is the number of pixels being in the local neighborhood, 2| |kf  is the 

absolute value of the pixel amplitude squared, and I  is the estimate of the mean 

backscatter power. 
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3. Coherence 

The term coherence in this thesis refers to the stability of the phase from one 

image pixel to the next. If the phase varies randomly, then the various methods which use 

CCD are impacted. The factors that affect coherence are revealed in the product 

 SNR base scene vol procγ γ γ γ γ γ= . (5) 

Here, SNRγ  is decorrelation due to receiver sensitivity, baseγ  is decorrelation from the 

inability of the aircraft to replicate the previous pass exactly, sceneγ  is the decorrelation 

from contributions of multiple scattering centers in a scene, volγ  decorrelation due to 

scattering from rough surfaces, and procγ  is decorrelation from processing errors [10].  

4. Polarization 

The CCD challenge dataset has three different polarization types: a) horizontal-

horizontal (HH), b) vertical-vertical (VV), and c) horizontal-vertical (HV). The concept 

of vertical and horizontal polarization is typically referenced to the antenna orientation 

with respect to ground [11], as presented in Figures 4, 5, and 6. In addition, the direction 

of polarization is referenced with respect to the electric field distribution across an 

antenna. In the context of SAR, the polarization differences correspond to the 

orthogonality of the antennas. Specifically, two antennas are oriented in such a way to 

form a 90-degree intersection.  
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Figure 4.  Antennas Oriented in VV Polarization 

 

Figure 5.  Antennas Oriented in HH Polarization 
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Figure 6.  Antennas Orientated in HV Polarization 

5. Repeat Pass 

Repeat passes of the SAR platform are used to generate the metrics for all of the 

change detection methods which are investigated in this thesis research. Repeat pass 

corresponds to either the difference between two images taken at two different times or 

implies that multiple SAR images have been collected at multiple different time intervals. 

For the current thesis research, only two pass collections were used to evaluate algorithm 

performance. In the subsequent analysis, there are references to a “mission image” and 

“reference image.” The mission image is a baseline for comparison of the resulting 

changes in the reference image. The mission and reference images are seen in Figure 1. 
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III. CHANGE DETECTION 

In this chapter, we describe the different change detection algorithms that are 

investigated in this work. All of the change detection algorithms use a moving window, 

as described in Chapter II Section B.1. In addition, a functional block diagram for the 

change detection algorithms of Sections A-D is shown in Figure 7. The reference and 

mission images in this general change detection algorithm functional block diagram are 

passed through a sliding window to reduce high frequency speckle in the images. The 

next step is the passing of the data through the change detection method. Finally, the 

output is passed through a threshold detector to rule if pixels are classified as a valid 

change. 

In Section E, a coherent change detection method, which was presented by 

Miriam Cha, et al., combined two of the algorithms investigated in the current thesis 

research and obtained improved change detection results overall compared to the use of 

the separate algorithms individually [6].  

 

Figure 7.  General Change Detection Algorithm Flowchart 
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A. INCOHERENT CHANGE DETECTION 

The incoherent change detection (ICCD) method is effective and efficient at 

evaluating large-scale changes in scenes of interest. This calculation is simpler than the 

other change detection methods discussed herein; however, one of the primary drawbacks 

of ICCD is that phase information is not retained from the calculation of the relevant ratio 

change metric. Instead, ICCD uses the mean-square amplitude of a local set of pixels 

corresponding to two passes in order to determine if change has occurred at each image 

pixel location. The ratio change metric is defined via 

 
2

1
2

1

N
kk

N
kk

f
R

g
=

=

= ∑
∑

, (6) 

where 2
kf  and 2

kg  are the mean-square pixel amplitudes of passes f  and g , 

respectively, and R  is the ratio change metric. Inspection of Equation (6) reveals that the 

ratio change metric can have values from zero to infinity. Touzi [5] created a ratio 

detector defined via 

 1

   if 1
 if 1

R R
r

R R−

≤
=  >

,  (7) 

in order to bound the possible range of values to lie between zero and unity. The variable 

R  is the ratio change metric in Equation (6), and r  is the modified ratio change metric if 

R  exceeds unity. The primary purpose of this ratio detector is to avoid complications of 

having two different thresholds to check for change. 

B. COHERENT CHANGE DETECTION 

Coherent change detection is effective at determining small changes in SAR 

images, e.g., footprints, tire tracks, or tree leaves. The change statistic for CCD ranges 

from 0 to 1 to show how likely the pixel under test has changed. The change statistic for 

CCD is  
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*

1

2 2

1 1

ˆ
N

k kk

N N
k kk k

f g

f g
ρ =

= =

=
∑

∑ ∑
. (8) 

In Equation (8), kf  is a set of complex pixel data for the mission image, kg  is a set of 

complex pixel data for the reference image, and ρ̂  is the coherence estimator. The 

numerator is the complex conjugate product. The denominator is a geometric mean of the 

images. 

C. ALTERNATIVE COHERENT CHANGE DETECTION 

Berger [6] introduced an alternative coherent change detection (ACCD) algorithm 

which is based upon the use of the arithmetic mean instead of the geometric mean within 

Equation (6). This algorithm yields superior results in comparison to the CCD method for 

cases in which the backscatter powers or variances between two passes are equal. This 

ACCD change statistic is  

 
*

1

2 2

1 1

2
ˆ

N
k kk

N N
k kk k

f g

f g
ρ =

= =

=
+

∑
∑ ∑

  (9) 

Here, the variable f  represents a set of complex-valued image pixel data for the mission 

image, g  gives the corresponding data for the reference image, and the denominator 

represents the arithmetic mean of the clutter power in the two images.  

D. LOG LIKELIHOOD CHANGE STATISTIC 

The log-likelihood change statistic (LLCS) detector combines methodologies 

which are based upon the evaluation of changes in both backscatter power and phase. The 

LLCS detector has been shown to be superior to ICCD and CCD methods [9]. The full 

derivation of the LLCS detector is presented in [12], and the final change metric is  

 ( ){ }1 1
0 1 1

N H
k kk

z Tr Q Q X X− −
=

= − ∑ ,  (10) 
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with H
kX is the Hermitian transpose of the vector X , z  is the LLCS change statistic and 

is expressed in units of dB. In addition, kX  is the kth vector containing a local 

neighborhood of pixels and is shown to be the concatenation of the mission image F  and 

reference image G  pixel amplitudes: 

 [ ], TX F G= .  (11) 

The Q  matrices are the covariance matrices of the unchanged and changed scenes, 

respectively, 

 
0

*0
F FG

FG G

Q Q
Q

Q Q
 

=  
 

,  (12) 

and 

 
1

1

0
0

F

G

Q
Q

Q
 

=  
 

.  (13) 

Here FQ ,
0GQ , and 

1GQ  are the mean backscatter powers of the mission image F and 

unchanged/changed scenes of reference image G. In addition, FGQ  is the cross correlation 

between the images F and G and can be represented by 

 E{ }H
FGQ FG= .  (14) 

The dataset used in this thesis research contains three different polarizations 

which can be used in the LLCS detector [13]. Preiss extended the LLCS detector to 

include all polarizations available from a dataset to enhance the LLCS performance. The 

z-test statistic remains the same as in Equation (10), but Equation (11) is modified to  

 [ ]1 2 3 1 2 3, , , , , TX F F F G G G= .  (15) 

Here, the subscripts 1, 2, and 3 represent different polarizations. In the context of the 

dataset for this thesis research, the subscripts represent HH, VV, and HV polarizations, 

respectively. The matrices in Equations (12) and (13) gives six by six matrices shown as 
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11 12 13 1 1 1 2 1 3

12 22 23 2 1 2 2 2 3

13 23 33 3 1 3 2 3 3

1 1 2 1 3 1 11 12 13

1 2 2 2 3 2 12 22 23

1 3 2 3 3 3 13 23 33

*

* *

0 * * *

* * * *

* * * * *

F F F F G F G F G

F F F F G F G F G

F F F F G F G F G

F G F G F G G G G

F G F G F G G G G

F G F G F G G G G

Q Q Q Q Q Q
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E. TWO-STAGE COHERENT CHANGE DETECTION 

The two-stage filter combines the concepts of incoherent change detection and 

coherent change detection [6]. This method has an ICCD stage and an ACCD stage in 

parallel. The registered changes from each block are passed into a combiner and outputs a 

change mask. The flowchart in Figure 8 illustrates the process. The image pixels are 

passed into the ICCD detector. If the backscatter powers are not equal, then it is 

registered as a change. If the backscatter powers are equal, then the sample coherence is 

evaluated in the ACCD detector to see if a small-scale change occurred. Any regions 

remaining are ruled as no change present. 



 16 

 

Figure 8.  Two-Stage Change Detection Flowchart. Adapted from [6].  

The dichotomies of the first and second stage outputs, as shown in Figure 9, are 

presented in Cha’s paper. The figure is a two-dimensional presentation of the regions of 

validity for the H0 and H1 hypotheses. The H0 hypothesis implies that no change is 

present, and the H1 hypothesis implies that change is present. The colored regions are 

sized based on the thresholds chosen for the ICCD and the ACCD stage. The purple 

region represents the H1 hypothesis of change, and the blue region represents the H0 

hypothesis of no change. The variable �R  represents the ratio of backscatter powers ratio, 

and � aρ  is the absolute ACCD coherence value.  
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Figure 9.  Probability Space of H0 and H1 Hypotheses for Two-Stage Change 
Detection. Source: [6]. 

The two-stage algorithm incorporates a null hypothesis test on the estimated 

backscatter ratio. This was shown to decrease the number of false alarms by rejecting 

pixel intensities that support the hypothesis. The estimated backscatter power �R  here does 

not use the Touzi method described in Chapter III Section A. The two-stage method 

incorporates an F-test. This test determines if two random variables’ variances are the 

same or different. For the case of the same variance this is called the null hypothesis and 

for different variance is called the alternative hypothesis. To determine which hypothesis 

is true, bounds called critical values are found as 

 1
, 1  , 2 , 2

2uR F N Nα
α−  = − 

 
,  (18) 
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and 

 1
, , 2 , 2

2lR F N Nα
α−  =  
 

.  (19) 

Here, α  is the significance level, usually 0.05 or 0.01, N  is the number of pixels in a 

local neighborhood, ,lR α  and ,uR α  is the lower bound and upper bound of the null 

hypothesis test, respectively, and 1F −  is the F distribution inverse. Taking an estimated 

ratio change value, it is compared to the bound values, , , or l uR R R Rα α< > , which result 

in change being detected for the ICCD portion of the two-stage method.  
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IV. THREE-STAGE CHANGE DETECTION  

The two-stage change detection algorithm is improved by combining its output 

with an extended polarimetric LLCS filter with segmentation. A k-means clustering 

algorithm is used for segmentation and is described in Section A. The benefit of using the 

extended polarimetric LLCS filter is discussed in Section B. The binary operation is 

discussed in Section C.  

The three-stage flowchart is shown in Figure 10. The left path of this flowchart is 

the combination of segmentation and LLCS filter with the three polarizations complex-

datasets. The right path is the same filter as described in Chapter III Section E. 

 

Figure 10.  Three-Stage Change Detection Flowchart 
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A. K-MEANS CLUSTERING 

K-means clustering is an algorithm that partitions data into separate regions that 

share similar means. To find the means, the algorithm identifies data points closest to a 

centroid and associates those data points to group number, creating multiple clusters of 

data points. 

To illustrate the k-means algorithm, a random clustered dataset is presented in 

Figure 11. The left subfigure represents the random dataset. The right subfigure is the 

output of the k-means algorithm. The three different colors represents which cluster those 

points belong to and the ×  represent centroid locations. The mathematics laboratory 

software (MATLAB) built-in function for k-means was used in this example. 

 

Figure 11.  Application of K-Means Algorithm 

The appropriate name for the MATLAB algorithm is k-means++ algorithm. In 

[14], the authors improved the efficiency of the original k-means algorithm and coined 

the name k-means++. The general algorithm is performed in multiple steps. The first step 

is to select a data point at random and declare this as centroid 1. The second step is to 

compute the geometric distances from centroid 1 to other data points in the set. The third 

step is to find the centroid 2 based on the information obtained in step 2. This process is 
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repeated for the number of steps to achieve a certain probability p  between the clusters. 

The probability function is 

 
2

2

( )
( )

x X

D xp
D x

∈

=
∑

, (20) 

where p  is the probability of the current data point being a part of a cluster dataset, x  is 

the sample position, and D  is the distance between x data points to the current centroid.  

The application of the k-means algorithm to SAR images separates different 

regions of an image into clusters. The different centroid regions represent objects 

(buildings/cars), trees or foliage, and shadows. The CCD challenge dataset with k-means 

applied is seen in Figure 12. Each of the subfigures in Figure 12 represent a different 

centroid cluster of the CCD challenge dataset and all were normalized to the maximum 

amplitude of their respective clusters. 

 

Figure 12.  CCD Challenge Problem Dataset with K-Means Application 

B. EXTENDED LLCS FILTER 

The extended LLCS filter incorporates all three polarizations of the CCD 

challenge problem dataset. The additional polarimetric data is said to improve the false 
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alarm rate and enhance scene details in [12] and [13]. The use of additional polarizations 

acts as a speckle decorrelator in the changed scene.  

There are two different estimation approaches in [12] using the Q  matrices 

defined in Equations (12) and (13). The first method is to create or derive a ground truth 

for the changed areas of the scene. Estimates of FQ  and GQ  can be found using Equation 

(4). Furthermore, FGQ  can be found by the product of Equation (8) and 
0F GQ Q , or

1F GQ Q . 

The second method of estimating the Q matrices is to set 
0 1G GQ Q=  and calculate 

FQ  and 
0GQ using Equation (4). This method diverges from the first because the 

assumption is the mean backscatter power between the two scenes is approximately 

equal. This method requires a good estimate of the coherence to be effective.  

The extended LLCS filter uses the first method of estimating the Q matrices with 

a slight difference. Once the repeat-pass images are segmented, the Q matrices estimates 

are generated for the number of classes used in the k-means algorithm. Then the LLCS 

change detection is applied to each of the segments and recombined to form the z -

change metric in Equation (10). A flowchart of this process is shown in Figure 13. In this 

flowchart, D and H represent the rows and columns of the scene, P is the number of 

polarizations, S is the number of clusters for the k-means clustering, and W represents F 

or G pixel samples. 

 

Figure 13.  Extended LLCS and Segmentation Process Flowchart 
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C. BINARY OPERATIONS 

The two binary operations used in the three-stage algorithm are binary 

thresholding and binary integration [15]. Binary thresholding is used to convert change 

data to either a 1 or a 0 to represent change or no change, respectively. This is done to 

only show the changed regions of interest.  

Binary integration is the step after the binary change mask to help “round-out” 

changes in the image. Furthermore, binary integration aids in the reduction of false 

alarms caused by speckle in the dataset. 

1. Binary Thresholding 

To determine if a change is made the following conditions are used 

 ( )C x T= ≥ , (21) 

or 

 ( )C x T= < ,  (22) 

and, 

 {0,1}C∈ ,  (23) 

where C  is binary for change or no change, x  is a two-stage filtered pixel amplitude, and 

T  is the threshold to rule change or no change. 

2. Binary Integration 

The binary integrator uses a sliding window to sweep across the binary threshold 

matrix output from Equations (21), (22), and (23). For each of the local sliding 

neighborhoods, the sum is compared to a threshold to decide if it was a change or a false 

alarm due to speckle. The binary integrator is defined by 

 ( ) ( )
N

k
P m C k U= ≥∑   (24) 

or 

 ( ) ( )
N

k
P m C k U= <∑ ,  (25) 
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and 

 ( ) {0,1}P m ∈ ,  (26) 

where ( )P m  is the change identifier of the m  pixel, C  is the change matrix from the 

binary threshold, k  is index of the current pixel, N  is the total number of pixels in the 

local neighborhood, and U  is the threshold.  

An example is presented in Figure 14 to show a binary integrator application. The 

black dots represent pixels identified as change, and the white dots are no change. Binary 

integration is applied to the neighborhood of pixels in the left subfigure, and the right 

subfigure presents the result. The threshold U is equal to four pixels, and N is equal to 

nine.  

 

Figure 14.  Binary Integrator Neighborhood Example 

 To show the effect of binary operations, both were applied to the two-stage filter 

output of the CCD challenge dataset. The union of the two-stage filter with the binary 

operations is the right path in Figure 10. The binary operations have a visual impact in 

the number of false alarms seen in Figure 15. The U threshold and number of pixels N

had to be found by trial and error for best performance. For Figure 15, the threshold U  

and number of pixels N  were 10  and 25 , respectively. Change is represented by the 

yellow pixels and no change is represented as blue pixels. A large concentration of false 

alarms is shown in the red rectangle in the pre-binary integrator output. 
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Figure 15.  Pre- and Post-binary Integrator Images 

The red rectangle was enhanced and compared to the post binary integration operation in 

Figure 16 to see the effect of the binary operations clearly. 

 

Figure 16.  Focused Red Area of Figure 15 
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V. CHANGE DETECTION SIMULATION RESULTS 

In this chapter, three of the change detection methods are investigated using a 

basic simulator. The three methods are ICCD, CCD, and LLCS. Simulator design and 

general simulator parameters are discussed in Section A, and the simulator results for the 

change detection methods are discussed in Section B. 

A. SIMULATOR MODEL AND PARAMETERS 

The simulator consists of two image generators, a change detection method, a 

simple threshold detector, and a mean estimator for the probabilities. The two image 

generators generate Gaussian-noise images. One image has unity variance and zero mean, 

while the other is altered for a specific test event. The two images are passed into the 

change detection algorithm, and a result image is generated by comparing the change 

metric to a threshold τ . This is repeated for the number of trials  V  for each value of τ . 

Based on the number of change metrics σ  being tested, the simulator executes 

length lengthVτ σ  times. The flowchart for the simulator is shown in Figure 17.  

The simulator starts by generating Gaussian pairs with chosen mean and 

covariance properties. These test images are passed into the change detection algorithm 

under test. The change metric output is compared against a simple threshold detector. 

Finally, the mean probability of detection is calculated for the number of trials for a set 

threshold. 

 

Figure 17.  Change Detection Simulator Flowchart 
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The test images are Gaussian bivariate random vectors with zero mean and 

covariance matrixQ . They each have a length of 1024 samples. For the simulations of the 

CCD and LLCS methods, correlation needs to be introduced between the two images. To 

create correlated vectors with specified variances, the following is used 

 [ , ]TZ X Y Q= ,  (27) 

where X and Y  are the Gaussian bivariate random vectors, Q  is the covariance matrix in 

Equation (12), and Z  is the transformed pair of Gaussian bivariate random vectors. The 

Gaussian vectors are reshaped to a 32 by 32 image after transformation. 

The simulator is a basic Monte Carlo simulator with Gaussian inputs. In order to 

achieve repeatable results, a minimum number of trials must be used. The number of 

required trials is estimated by 

 
21

2

( / 2) (1 )A P
M

P
α

ε

−  − ≥ ,  (28) 

where 1( / 2)A α−  is the complementary cumulative distribution function inverse, α  is the 

significance level, P  is the a priori probability of detection, and ε is the error tolerance 

[16]. The minimum number of required trials is found to be 2,177, using 0.05α = ,

0.9P = , and 0.01ε =  (1%). For the simulator, the number of trials is chosen to be 2500 

to further reduce error.  

Only three of the six change detection methods are simulated in this paper: ICCD, 

CCD, and LLCS. These three are viewed as the base algorithms for change detection. 

The other three change detection methods are composites of these three base methods.  

The primary goal of creating the simulator is to ensure the change detection 

algorithms are similar to Preiss’s findings in [9]. The results’ figures have theoretical 

curves created by the probability density functions (pdf) listed in Preiss’s paper. For full 

derivations for the pdfs refer to [9], [12], [13]. 
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B. SIMULATOR RESULTS 

The ICCD ROC curve is shown in Figure 18. The solid lines are the theoretical 

ICCD results using backscatter powers of 1, 3, 5, and 10 dB. The dotted lines give the 

corresponding simulated results. The theoretical curves are generated by the pdf 

 
1

2 2 1 2

(2 )( | )
( ) ( ) ( )

N N N

N N

N R Rp r R r
N r R r R

− −

−

 Γ
= + 
Γ + + 

 
 

.  (29) 

wherein ( )Γ ⋅  is the gamma function, N is the number of pixels in the local neighborhood, 

R is the true backscatter ratio, and r  is the estimated backscatter ratio. Numerical 

integration was performed on Equation (29) to find the probability of detection ( dP ) and 

probability of false alarm ( faP ).  

 

Figure 18.  ICCD Simulated versus Theoretical Results 

The ICCD is a measure of the ratio of the backscatter powers of two images, 

whereas the CCD is a measure of coherence between two images. The change metric for 

the CCD algorithm is coherence. The theoretical pdf as a function of coherence is 

described as 



 30 

 2 2 ( 2) 2 2
2 1( | , N) 2(N 1)(1 ) (1 ) ( , ;1; )N Np G N Nθ γ γ θ θ γ θ−= − − − , (30) 

whereγ represents true coherence value, θ  is the estimated coherence value, N  is the 

number of local neighborhood pixels, and 2 1( )G ⋅  is the Gauss hypergeometric function. 

The pdf is numerically integrated to give the theoretical curves in Figure 19.  

The change metric values for CCD are 0.45, 0.6, 0.75, and 0.9. These values are 

dimensionless but represent the coherence between the baseline and change image. The 

CCD method starts to perform reasonably well once coherence is above 0.62. For a 

coherence value of 0.9, the CCD method achieved above a dP  of 0.9 and faP  of 10-4. The 

CCD ROC curve is shown in Figure 19. The solid lines are the theoretical CCD results 

using backscatter powers of 0.45, 0.6, 0.75, and 0.9. The dotted lines give the 

corresponding simulated results. 

 

Figure 19.  CCD Simulated versus Theoretical Results 

The LLCS detector estimates the coherence and the mean backscatter ratio of two 

images. To verify the LLCS algorithm performance, two separate simulations were 

performed. One simulation keeps the coherence static while the mean backscatter power 
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ratio is varied. The second is the opposite case with static backscatter power and varied 

coherence.  

The coherence portion of LLCS was simulated first and shows better performance 

than the CCD algorithm. For a coherence value of 0.62 and a faP  of 10-4, the dP  is 0.48. 

In comparison, the CCD algorithm with a coherence of 0.62 has a dP  of 0.006. The 

LLCS shows two orders of magnitude improvement. The ROC curves for varying the 

coherence of the LLCS are seen in Figure 20. The solid lines are the theoretical results 

using coherence values of 0.45, 0.6, 0.75, and 0.9. The dotted lines represent the 

corresponding simulated results. The variance of the test images were set to unity. 

 

Figure 20.  Simulated Constant Power LLCS versus Theoretical Results 

The theoretical curves in Figure 20 were created for 0z ≤  
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and for 0z >  
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Here, z  is the change metric, nλ  are the eigenvalues for the Q  matrices defined in 

Equations (12) and (13), C  is the transformed covariance values, N is the total 

neighborhood pixels, and v is defined as 

 
1 1v
α β

= +  , (33) 

where 

 ( )2
1 11 1Cα λ ρ= − ,  (34) 

and 

 2
2 22 (1 )Cβ λ ρ= − .  (35) 

Here, ρ  represents true coherence of the image. 

The LLCS simulation using constant coherence yields better performance than the 

ICCD method. For a mean backscatter power of 5 dB and faP  of 10-4, the ICCD has a dP  

of 0.04. In comparison, the LLCS achieves a dP  of 0.97. The LLCS equal coherence 

results can be seen in Figure 21. The solid lines are the theoretical results using 

backscatter powers of 0, 1, 3, 5, and 10 dB. The dotted lines represent the corresponding 

simulated results. A constant value of 0.62 was used for the coherence. 

The theoretical curves are defined for 0z ≤   
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wherein, ρ is the true coherence of the scene, N is the number of local pixels under test, v 

is defined in Equation (33), α is defined in Equation (34), β  is defined in Equation (35) , 

and kµ  is defined as  
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.  (38) 

 

Figure 21.  Simulated Constant Coherence LLCS versus Theoretical Results 
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VI. CHANGE DETECTOR INVESTIGATION 

The CCD Challenge Problem dataset was collected by an AFRL airborne X-band 

SAR sensor. There are ten repeat passes of the same geographic scene captured on the 

same day. The images contain foliage, buildings, and vehicles. Parameters for the 

airborne sensor are presented in Table 1. 

Table 1.   AFRL SAR Sensor Parameters. Adapted from [8]. 

Center Frequency 9.6 GHz 
Bandwidth 640 MHz 
Polarizations HH, VV, and HV 
Image Sampling Spacing ( s∆ )  0.2 m 
Image Pixel Dimensions 4501 pixels by 4501 Pixels 
Depression Angle 45 degrees 
Image Data Type Complex, 32 bit floating point 
CCD Challenge Data Files Reference: FP0121 Mission: FP0124 
 

In this chapter, there are comparative assessments of the image changes to 

common objects e.g., cars, roads, running tracks, etc. In order to relate suspected changes 

to objects, a conversion between pixel and meters is found from 

 L l s= ∆ ∆ ,  (39) 

where l∆  is the number of pixels in a given region of interest, s∆  is the image sampling 

spacing from Table 1, and L  is the length in meters. The average dimensions of common 

objects are in Table 2. 

Table 2.   Average Object Dimensions. Adapted from [17], [18]. 

Average American Mid-Size Sedan 
[Length ,Width] 

 
[2.66 m, 1.81 m] 

Large SUV [Length, Width] [2.79 m, 1.99 m] 
American Highway Lane Width 3.6 m 

Running Track Width (One Lane) 1.22 m 
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A. DESCRIPTION OF THE AREA OF INTEREST 

A subarea was selected from the CCD challenge dataset to use as the area of 

interest for this investigation. The region has part of what appears to be a cul-de-sac, a 

large parking lot with cars, a building, a circular track to the left of the building, and other 

foliage and is shown in Figure 22. One of the horizontal rows in the parking lot is 

approximately 300 pixels wide. Using Equation (39), we found the length to be 60 m, or 

approximately 22 cars wide. Assuming the parking lot has two by N spots, there are a 

total number of 44 potential cars. This allows for many targets of opportunity as well as 

errors in estimation of the ground truth.  

 

Figure 22.  Mission and Reference Images of Area of Interest 

B. GROUND TRUTH 

The CCD challenge dataset does not include ground truth data. To generate the 

ground truth image, both images are overlaid and changes are found visually. The ground 

truth image is shown in Figure 23 with the mission image for comparison. The black 
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represents change and white represents no change. There may be more changes possible 

in the scene, but the 26 boxes identified are sufficient to characterize the change detection 

methods.  

 

Figure 23.  Mission Image Comparison to Ground Truth 

During the investigation, we noticed a high false alarm rate when evaluating the 

CCD challenge dataset. This is due to the sliding window’s natural behavior of causing 

“bleed over” into adjacent pixel boxes around targets. A method exists to extend the 

ground truth boxes to account for this bleed over. This is called guard cells and was used 

in [19]. In addition to the sliding window’s behavior in this thesis research, energy 

spillover is mentioned to be a factor in bleed over as well. The size of the guard cells in 

this thesis research was five pixels in width and height. This extends the boxes by ten 

pixels in width and ten pixels in height. By including the guard cells, the false alarm rate 

decreased. The ground truth with the extended guard cells is shown in Figure 24. The 

ground truth is shown in the left panel, and the extended guard cells are given in the right 

panel. 



 38 

 

Figure 24.  Ground Truth versus Extended Guard Cells 

In later sections of this chapter, there are comparisons to other changes that are 

noticed in the pair of images during CCD application. This is due to the CCD’s ability to 

recognize small-scale changes. These are not included in the ground truth images because 

these changes cannot be discerned visually; however, qualitative analysis is done on the 

circular track described in Chapter VI Section A.  

A zoomed-in area of the subarea is shown in Figure 25. The image was created 

using ICCD change detection. The size of the red box in the image is 28 by 12 pixels. 

Using Equation (39), we calculated the size to be 6.44 m by 2.76 m. This is 

approximately 2.4 times longer and 1.5 times wider than the average mid-size sedan size 

in Table 2. This result could be affected by the bleed-over effect and energy spillover. 

Applying additional averaging will extend the size even more.  

An example of a suspected car change is presented in Figure 25. The left and right 

subfigures show the mission and reference images, respectively. White represents a 

change was detected and black represents no change. An assumed shape for a car 

detection is rectangular in nature; however, the change region in the reference subfigure 

does not have a definitive shape. This example figure is to illustrate the difficulty of 

labeling change through visual inspection. 
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Figure 25.  Zoomed-in Area of Suspected Car 

C. ICCD VERSUS CCD RESULTS 

Before showing the quantitative ROC curves, the raw output of these filters are 

placed side by side to show qualitative differences in behavior in Figure 26. For the 

ICCD outputs, the large-scale changes are recognized well. Large-scale change in the 

context of this investigation means cars moving, large ground changes, e.g., fields being 

plowed. To iterate, large-scale changes are on the order of tens of meters.  

For small-scale changes, the CCD outperforms the ICCD method in Figure 26. 

The ICCD and CCD outputs are in the left and right subfigures, respectively. The ICCD 

has visible noise through its output. Small-scale changes are on the order of a few meters, 

such as a gravel track being used in between passes. As shown in the red circle, the track 

area is discerned clearly in the CCD output. The track area in the ICCD output is cloudy 

from the speckle and appears to blend into other surrounding pixels; however, the CCD 

visual change does not have a low coherence. From the color bar, the track is ~0.5 

coherence. Usually a good value of estimated coherence is closer to 0.2 or less. 
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Figure 26.  ICCD and CCD Subarea Results 

The track area in Figure 26 is focused and presented in Figure 27. The purpose of 

Figure 27 is to clearly show the speckling effect on the ICCD and the better performance 

of the CCD.  

 

Figure 27.  Track Area of Figure 26 
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The ICCD change statistic is 1.73 times the CCD change statistic value, 

calculated by the ratio of the data points in Figure 27. The CCD figure has a less-noisy 

background than the ICCD. The noise does affect the ICCD change statistic. 

 On the north-side part of the track, there is less coherence than the south-side. 

This change may have been induced by someone walking on the track in between the 

times of capture for the mission and reference image. Furthermore, the track could be 

made of gravel causing slightly different scattering properties to the scene if heavily used.  

 The cars have more distinction when using the ICCD method. From Figure 28, 

the ratio of the data tips indices is 39. This is indicative of the ICCD performance over 

CCD for recognition of large objects. The noise is not apparent in the ICCD image of the 

car locations, indicating a large disturbance affected the mean backscatter of the repeat 

pass images.  

 

Figure 28.  Zoomed-in Car Area of Figure 26 

To illustrate the difference in performance in more quantitative terms, the ROC 

curve is presented in Figure 29. The crossover point where CCD starts to outperform the 

ICCD is for a detection threshold of 0.515.  
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Figure 29.  ROC Curve for ICCD versus CCD 

The ICCD change map, CCD change map, and ground truth is shown in Figure 

30. The black dots represent change and the white dots represent no change. In these 

plots, the binary change maps are given for 5N =  and 0.515T = . 

 

Figure 30.  ICCD versus CCD Binary Change Maps with Ground Truth 
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The ICCD was better visually than the CCD. The binary change masks in 

Figure 30 illustrates this point. Outside the ground truth boxes, there are significant large 

artifacts that appear in the ICCD change map. In contrast, the ICCD identifies change 

pixels more quickly than the CCD, but the inherent noisy nature weighs down its 

performance over the threshold range. 

D. ACCD VERSUS CCD RESULTS 

The ACCD method is measured against the CCD method in this section. The 

ACCD method has superior performance when the underlying backscatter repeat-pass 

images are approximately equal. In this context, fewer false alarms occur. Since the 

images are already registered, the backscatter powers in the unchanged areas of the scene 

should be similar. Any large differences in backscatter power should only be the changed 

areas. The raw outputs of the ACCD and CCD methods of the area of interest are 

displayed in Figure 31. The left and right panels provide a comparison of ACCD versus 

CCD raw outputs for an area of interest. 

 

Figure 31.  Area of Interest with ACCD versus CCD Raw Outputs 
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Use of the denominators in Equations (8) and (9) within Equation (4) yields 

 f gA I I= ,  (40) 

and 

 
2

f gI I
B

+
= . (41) 

Inspecting the altered denominators, Equation (40) is the multiplication of the 

intensities of a local neighborhood, and Equation (41) is the sum of the intensities of the 

repeat-pass pair. An assumption of the underlying backscatter power approximately being 

equal in areas of no change implies Equation (41) as the more stable of the two equations. 

Continuing with the investigation, we compare the ACCD and CCD performance 

of the cars in Figure 32. It is important to note that vehicles are more pronounced in the 

ACCD raw output. The CCD denominator, Equation (40), experiences a multiplicative 

effect that impacts the coherence value. 

 

Figure 32.  Zoomed-in Car Area ACCD versus CCD Change Detection Methods 



 45 

The ROC characteristics of these two methods are similar, as shown in Figure 33; 

however, the ACCD outperforms the CCD for high threshold values. The ACCD does 

not converge with the CCD curve until a faP  of 0.65. At this point, the thresholds are 

very low, allowing for more noise to be registered as changes. 

Earlier, it was stated that the ACCD should outperform the CCD based on the 

knowledge of the dataset having similar underlying backscatter power. Indeed, there may 

be cases where the CCD method has better performance than the ACCD. To no avail, 

there are zero instances when the CCD outperformed the ACCD in this research.  

 

Figure 33.  ROC Curve for ACCD versus CCD 

The binary change maps are generated with a threshold of 0.705T =  and 5N =  

in Figure 34. The noise behavior of the ACCD and CCD outputs are similar except for 

the ground truth areas. The ACCD detection in the ground truth areas are filled in more, 

as seen by the solid black, whereas the CCD ground truth region has grainy shapes and 

discerning a target is not clearly achieved. 
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Figure 34.  ACCD versus CCD Binary Change Maps with Ground Truth 

E. LLCS RESULTS 

The LLCS results presented in this section are for single polarization. Having the 

additional polarizations improves the results; however, the results presented here are to 

capture the base performance of the LLCS method and not the polarimetric extension.  

The LLCS detector performs best with knowledge of the true covariance matrices 

of the images. Since the true characteristics of the scenes are not known, approximations 

are made for the Q  matrices. A pair of maximum-likelihood estimators [9] replace the Q  

matrices in Equations (12) and (13) as  
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Here, 1M  and 0M  are the number of pixels in the estimate, 
0kX  and

1kX  are the column 

image vectors pairs defined, respectively, as 

 
0 0 0

[ , ]T
k k kX f g=   (44) 

and 

 
1 1 1

[ , ]T
k k kX f g= ,  (45) 

where 1..k M=  and M is 0M  or 1M is from Equation (42) or Equation (43), and f and g 

are the image pixels from the reference image and repeat image, respectively. The 

subscript 0 and 1 refer to the null hypothesis H0 and the alternate hypothesis H1.  

 The area of consideration in the prior sections is not used here. Instead, a focused 

area that includes a car-like object with surroundings of grass and trees was used. The 

LLCS uses the estimators from Equations (42) and (43). The image pairs are found using 

the ground truth from Chapter VI Section B. The parameters 1M  and 0M were set to 414 

and 50547, respectively. The LLCS results are compared with the CCD and ICCD results 

are shown in Figure 35. The units of the LLCS and ICCD color bars are in dB. The CCD 

color bar values are dimensionless and represent coherence. 

 

Figure 35.  LLCS versus CCD versus ICCD Single Car Results 
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The LLCS is expected to be far superior to the ICCD and CCD algorithms; 

however, there are more visible artifacts seen in the LLCS subfigure in Figure 35 than the 

ICCD or CCD subfigures. The single car can be seen clearly in the ICCD output. The 

CCD subfigure shows the car along with a diagonal line artifact. The LLCS filter does 

not perform as expected. This could be due to error in how the estimation is formed or 

not having the images properly registered.  

 The ROC curves show more clearly the performance results of the three methods 

in Figure 36. The LLCS trends with the ICCD curve, while the CCD performs poorly 

next to these two. At a dP  of approximately 0.9 the ICCD and LLCS have a faP  of 

0.0007. The CCD method has a faP  of 0.064. The faP  values have two orders of 

magnitude difference. 

 

Figure 36.  ROC Curves for CCD versus ICCD versus LLCS 

The results of the LLCS change detection are a cause for concern. The ICCD 

seemed to perform better than or as well as the LLCS. Another author has similar results 

to the ICCD and CCD for the CCD challenge problem [20], as shown in Figure 37.  
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Figure 37.  Change Detection ROCs. Source: [20]. 

F. TWO-STAGE RESULTS 

The two-stage filter is a composite filter involving the ACCD and the ICCD 

methods so its results should be similar to both. The two-stage filter raw output has more 

discernable changes than the ACCD algorithm, as shown in Figure 38. This improvement 

to output can be attributed to the ICCD inclusion into the filter. 

  

Figure 38.  ACCD versus Two-Stage Raw Output 



 50 

The running track area in the subfigure for the two-stage filter is quite identical to the 

ACCD output. The two figures are nearly the same. For the areas of car change detection, 

there is deeper blue indicating a better registration of change from the two-stage filter. 

This was not an area of the ground truth but shows the effects of the CCD algorithms of 

reducing speckle. 

The zoomed-in track area is presented in Figure 39. The two-stage filter did not 

suffer as much noise as the ICCD filter. This is from the benefit of the ACCD. The 

deeper blues can be seen in the Two-Stage subfigure showing an improvement over 

ACCD.  

 

Figure 39.  ACCD versus Two-Stage Track Areas 

The ICCD car area from Figure 28 was improved upon using the two-stage 

change detection. The two-stage method created rounded images for the cars in Figure 

40. Furthermore, the amount of speckle around the car areas was reduced, which leads to 

a reduction in the number of false alarms. The reduction of speckle from the ICCD output 

of the two-stage filter is due to the null hypothesis test.  
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Figure 40.  ACCD versus Two-Stage Car Areas 

The two-stage ROC curve is presented with the ACCD and ICCD as a 

comparison to the two-stage filter, as seen in Figure 41. At a faP  of approximately 0.05, 

the three filters converge in the ROC graph. 

 

Figure 41.  ROC Curves of ACCD, ICCD, and Two-Stage Filters 
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As mentioned previously, the basic ICCD in Chapter III Section A does not use the null 

hypothesis test. This allows for more contribution from speckle that will affect the 

coherence. After the crossover near a faP  of approximately 0.05, the two stage begins 

outperforming the ICCD algorithm for higher faP  values but runs in parallel to the 

ACCD ROC curve. This is to be expected since the second stage is entirely the ACCD 

method. 

 The binary map was generated with a threshold of 0.46 for a faP  of 0.05, as 

shown in Figure 42. The white represents no change and black represents change. On the 

bottom of the left and right subfigures there is a large change area that is not a part of the 

ground truth, the area inside the red box. This region is assumed to be trees or foliage. 

This result is shown to be filtered out in the next section. Reduction of these false alarms 

can be achieved by post processing operations. This was not pursued in this investigation; 

however, this area is responsible for raising the faP  in the ROC curves of Figure 41. The 

ACCD and Two-Stage binary change maps were generated with 5N =  and 0.46T = . 

  

Figure 42.  ACCD and Two-Stage Comparison to Ground Truth 
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G. THREE-STAGE CHANGE DETECTION RESULTS 

The three-stage filter is only compared to the single polarization LLCS and the 

two-stage filter. The premise is that the three-stage filter would show improvement over 

the LLCS method. For the comparison of the two stage and three stage methods, it was 

hypothesized that the three-stage filter would have equivalent or better performance. 

Visually, the three-stage method yields higher performance than the LLCS and two-stage 

methods; however, this conclusion does not apply to the quantifiable results. 

The three-stage filter yielded more promising visual results than that of the single 

polarization LLCS. The visual results of these two filters are shown in Figure 43. The 

artifacts are overwhelming in the single polarization LLCS subfigure; whereas, the three-

stage filter shows a noticeable reduction in the amount of speckled noise. For example, 

the road edges can be seen in the three stage’s results clearly. The LLCS speckle distorts 

the edges of the road and other characteristics of the scene. 

 

Figure 43.  LLCS versus Three-Stage LLCS Output 

Even though the visual quality of the three-stage filter is clearly better than that of 

the LLCS, the ROC curves contradict the visual successes. The starting point of the 

LLCS curve in Figure 44 is at a higher dP  than the three-stage filter; however, the binary 
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operation results of the three-stage filter are satisfactory. The binary change masks are 

seen in Figure 45.  

 

Figure 44.  ROC Curves for LLCS versus Three Stage 

The three-stage results of Figures 41 and 42 did not incorporate the binary 

operations. The binary operations were included only in Figure 45. The three-stage 

results used a z threshold of 80 dB for the LLCS stage. For the two-stage filter, the 

threshold for the coherence was set to 0.9, and alpha was set equal to 0.01 for the null 

hypothesis test.  

 

Figure 45.  Change Masks of Three Stage, Two Stage Change Mask, and 
Ground Truth 
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VII. CONCLUSIONS 

A. DISCUSSION OF RESULTS 

In this investigation, six change detection methods were studied and analyzed. A 

number of visual and quantitative comparisons were shown and led to greater 

understanding of the change detection filters’ strengths and weaknesses. The ICCD 

performance was superior at identifying large-scale changes with lower thresholds than 

other methods. The ACCD could identify small-scale changes just as well as the CCD. 

Also, the ACCD method rendered large-scale changes clearer than the CCD method. 

The LLCS detector was expected to be the superior change detection method in 

this method; however, the LLCS results were only superior in the simulator results. For 

the application to the CCD challenge problem dataset, the LLCS had equivalent results to 

the ICCD and CCD methods, seen in Figure 36. This implies the estimation of the Q 

matrices could have errors in implementation.  

The CCD challenge dataset results were surprising as well. The change detection 

method that had the best ROC curve was the two-stage filter. In addition, the visuals 

showed clear change in the ground truth regions seen in Figures 40 and 42. 

The three-stage filter showed high detail of the scene but had the worst ROC 

curve. The three-stage delineated roads from surrounding grass areas and the cars from 

the parking lot, seen in Figure 43. The poor ROC curve performance is from more false 

alarms than the other methods. The three-stage was indeed hoped to have the best 

performance but fell short; however, the design and implementation of the three-stage 

filter was a good venture.  

B. FUTURE WORK 

There are a number of possible avenues for valuable analyses which could follow 

the current investigation. First, the LLCS theory and the incorporation of the LLCS 

change detection method into MATLAB could be improved. The execution time of the 

LLCS algorithm was on the order of minutes. The Two-Stage, CCD, ACCD, and the 
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ICCD algorithms executed on the order of seconds. The LLCS equations were ported 

directly into MATLAB without any simplification for computational efficiency.  

The Three-Stage change detection Q estimate is believed to be at fault for the 

poor performance. A better method of estimation is needed for this algorithm to be 

successful. A method to improve upon this Q estimate would be to do a spline fit to the 

scene such as in [13]. An additional point of study would be how to increase performance 

of the change detection methods, such as in [4], by using eigenvalue methods instead of 

the simple threshold detector used in this investigation.  

An unstated point to this investigation for the author was to determine if there was 

a change detection method that performed well in most circumstances. Based on the 

results, the two-stage filter or the ACCD change detection are suitable candidates. 



 57 

LIST OF REFERENCES 

[1] C. A. Wiley, “Synthetic aperture radars,” in IEEE-Transactions on Aerospace and 
Electronic Systems, vol. AES-21, no. 3, pp. 440–443, May 1985. [Online]. 
Available: http://ieeexplore.ieee.org/document/4104077/ 

[2] Y. Zhang and X. Cheng, “Application of SRTM-DEM based two-pass SAR 
interferometry for detecting seismic deformation on high-altitude rugged terrain—
A case study in Kokoxili Ms8.1 earthquake, 2001,” in Geoscience and Remote 
Sensing Symposium, 2005, vol. 7, pp. 5316–5319.  

[3] J. Stastny, M. Hughes, D. Garcia, B. Bagnall, K. Pifko, H. Buck, and E. Sharghi, 
“A novel adaptive synthetic aperture radar ship detection system,” in OCEANS, 
2011, pp.1–7  

[4] V. Carotenuto, A. D. Maio, C. Clemente, J. J. Soraghan, and G. Alfano, 
“Invariant rules for multipolarization SAR change detection,” IEEE Trans. on 
Geosci. and Remote Sens., vol. 53, pp. 3294–3311, Dec. 2014. 

[5] R. Touzi, A. Lopes, and P. Bousquet. “A statistical and geometrical edge detector 
for SAR images,” IEEE Trans. on Geosci. and Remote Sens., vol. 26, pp. 764–
773, Nov. 1988.  

[6] M. Cha, R. D. Phillips, P. J. Wolfe, and C. D. Richmond, “Two-stage change 
detection for synthetic aperture radar,” IEEE Trans. on Geosci. and Remote Sens., 
vol. 53,pp. 6547–6560, July 2015.  

[7] The Sensor Data Management System. (n.d.). Object name: A challenge problem 
for SAR change detection and data compression. [Online]. Available: 
https://www.sdms.afrl.af.mil/. Accessed June. 15, 2016. 

[8] S. M. Scarborough, L. Gorham, M. J. Minardi, U. K. Majumder, M. G. Judge, L. 
Moore, L. Novak, S. Jaroszewski, L. Spoldi, and A. Pieramico, “A challenge 
problem for SAR change detection and data compression,” SPIE Proceedings, 
vol. 7699, Apr. 2010. doi: 10.1117/12.855378 

[9] M. Preiss and N. J. S. Stacy, “Coherent change detection: Theoretical description 
and experimental results,” Def. Sci. and Tech. Org., Edinburgh, South Australia, 
Rep. DSTO-TR-1851, August 2006. 

[10] A. Bouaraba, A. Younsi, A. Belhadj-Aissa, M. Acheroy, N. Milisavljevic, and D. 
Closson, “Robust techniques for coherent change detection using COSMO-
skymed SAR images,” Progress in Electromagnetics Research, vol. 22, pp. 219, 
2012. 



 58 

[11] C. A. Balanis, Antenna Theory Analysis and Design, 2nd ed. Hoboken, NJ: John 
Wiley & Sons, 2005. 

[12] M. Preiss and N. J. S. Stacy, “Polarimetric SAR Coherent Change Detection,” in 
7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 
2008.  

[13] M. Preiss, D. A. Gray, and N. J. S. Stacy, “Detecting scene changes using 
synthetic aperture radar interferometry,” IEEE Trans. on Geosci. and Remote 
Sens., vol .44, pp. 2041–2054, 2006.  

 [14] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful seeding,” 
in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete 
Algorithms, New Orleans, LA, 2007, pp. 1027–1035. 

[15] B. R. Mahafza, Radar Systems Analysis and Design Using Matlab, 3rd ed. Boca 
Raton, FL: CRC Press,2012.  

[16] S. M. Kay, Fundamentals of Statistical Signal Processing, 1st ed. Upper Saddle 
River, NJ: Prentice-Hall, 1998. 

[17] Manual on Classification of Motor Vehicle Traffic Accidents, ANSI D16.1, 2007. 
[Online]. Available: http://standards.globalspec.com/std/1712071/ansi-d16-1 

[18] American Association of State Highway Officials, “A policy on geometric design 
of highways and streets,” American Association of State Highway Officials, 
Washington, DC, 2001. 

[19] V. Carotenuto, A. De Maio, C. Clemente, J. J. Soraghan, and G. Alfano, “Forcing 
scale invariance in multipolarization SAR change detection,” IEEE Trans. On 
Geosci. And Remote Sens., vol. 54, pp. 36–50, 2016. 

[20] I. Stojanovic and L. Novak, “Change detection experiments using gotcha public 
release data,” in Proceedings of SPIE Algorithms for Synthetic Aperture Radar 
Imagery, Baltimore, MD, 2013, vol. 8746. 

  



 59 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	NAVAL
	POSTGRADUATE
	SCHOOL
	I. introduction
	A. Purpose of thesis
	B. thesis organization

	II. SAR concepts and descriptions
	A. sdms data
	B. MATHEMATICAL CONCEPTS
	1. Spatial Averaging (Moving Window)
	2. Correlation
	3. Covariance

	C. SAR Concepts
	1. Speckle
	2. Backscatter Power
	3. Coherence
	4. Polarization
	5. Repeat Pass


	III. change detection
	A. Incoherent Change detection
	B. Coherent Change Detection
	C. Alternative Coherent change detection
	D. LOG LIKELIHOOD CHANGE STATISTIC
	E. Two-Stage Coherent Change Detection

	IV. Three-stage Change Detection
	A. K-Means Clustering
	B. Extended LLCS Filter
	C. Binary Operations
	1. Binary Thresholding
	2. Binary Integration


	V. change detection Simulation Results
	A. Simulator model and parameters
	B. Simulator Results

	VI. CHANGE DETECTOR investigation
	A. Description of the Area of Interest
	B. Ground Truth
	C. ICCD Versus CCd Results
	D. ACCD Versus CCD Results
	E. LLCS RESULTS
	F. Two-Stage Results
	G. three-stage change detection Results

	VII. Conclusions
	A. Discussion of Results
	B. Future Work

	List of References
	initial distribution list



